

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at opensource@bluelabs.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

db-facts configuration

Exporting configuration from an existing machine

If you have an existing machine using db-facts, you can export
your config to the new machine:

	On the new machine, run:

mkdir -p ~/.dbfacts.d

	Open up the ~/.dbfacts.d/whatever-database-name.yml file for editing

	On your desktop, run:

db-facts config whatever-database-name

	Paste the contents into the new file.

Note that this will export passwords in plaintext - if you need
something more secure, either copy your config verbatim from the
original files, or see below for configuring db-facts to use whatever
secrets management system is available on the new machine.

Creating new configuration

db-facts currently bundles a default configuration located at
db_facts/dbcli.yml. You can add additional configs or
override existing ones by using custom configs. db-facts looks for configs in
the following order:

	/etc/dbfacts.yml

	All files in /etc/dbfacts.d in lexicographic order

	/usr/local/etc/dbfacts.yml

	All files in /usr/local/etc/dbfacts.d in lexicographic order

	~/.dbfacts.yml

	All files in ~/.dbfacts.d in lexicographic order

	./.dbfacts.yml

	All files in ./.dbfacts.d in lexicographic order

Each time it encounters a file in the list above, it merges the config in that
file into the existing config to generate a new one. Top-level config
dictionaries are merged with the last-loaded config values taking precedence.
For example, if your ~/.dbfacts.yml contains:

dbs:
 mydb1:
 exports:
 user: cwegrzyn
 hostname: a.example.com
 mydb2:
 exports:
 user: cwegrzyn2
 hostname: b.example.com
orgs:
 org1:
 full_name: My Org

and ~/.dbfacts.d/001_mydb2.yml contains:

dbs:
 mydb2:
 exports:
 user: cwegrzyn3
orgs:
 org2:
 full_name: My Other Org

then the effective configuration for db-facts is:

dbs:
 mydb1:
 exports:
 user: cwegrzyn
 hostname: a.example.com
 mydb2:
 exports:
 user: cwegrzyn3
orgs:
 org1:
 full_name: My Org
 org2:
 full_name: My Other Org

Note that the entry for mydb2 has been COMPLETELY replaced; the two different
configurations were NOT merged. Only the top-levels are merged.

Common configuration patterns

Pulling auth tokens from the environment

dbs:
 mybigquerydb-myserviceuser:
 jinja_context_name:
 - env
 - base64
 exports:
 type: bigquery
 protocol: bigquery
 bq_account: myserviceuser
 bq_service_account_json: "{{ env('GCP_SERVICE_ACCOUNT_JSON_BASE64') | b64decode }}"
 bq_default_project_id: 'my_gcp_project'
 bq_default_dataset_id: 'my_bigquery_dataset

With this config, db-facts mybigquerydb-myserviceuser will show you the credentials,
including the decoded environment variable. “Just Some Awesome

Inline credentials

While this is not recommended (please save your secrets more securely
than a YAML file sitting on disk!), you can specify things this way if
you must.

Here is an example Redshift config with inline credentials:

dbs:
 myconfig:
 exports:
 host: a.example.com
 port: 5432
 database: analytics
 type: redshift
 protocol: postgres
 user: janalyst
 password: thisisagreatpassword

Development

Installing tools and dependencies

This assumes you have a configured and working pyenv and
pyenv-virtualenv installation:

./deps.sh

Testing

Run the tests:

make test

Semantic versioning

In this house, we use semantic versioning [http://semver.org] to indicate
when we make breaking changes to interfaces. If you don’t want to live
dangerously, and you are currently using version a.y.z (see setup.py to see
what version we’re at) specify your requirement like this in requirements.txt:

db_facts>=a.x.y,<b.0.0

This will make sure you don’t get automatically updated into the next
breaking change.

Extensions

You can create a plugin providing your own Jinja contexts by creating a Python package
implementing functions matching the ‘JinjaContextPuller’ type defined in
db_facts_types.py [https://github.com/bluelabsio/db-facts/blob/master/db_facts/db_facts_types.py].
You can use the existing Jinja context pullers
(pull_*_jinja_context) referenced in
jinja_context.py [https://github.com/bluelabsio/db-facts/blob/master/db_facts/jinja_context.py]
as examples.

To get db_facts to use your Jinja context pullers, you’ll create
config similar to this in your setup.py file:

setup(name='my_db_facts_plugin',
 ...
 entry_points={
 "db_facts.jinja_contexts": [
 'my_context = my_db_facts_plugin.my_jinja_context:pull_my_jinja_context',
]
 },

This will create a new Jinja context named my_context that you can
specify in your db-facts configuration.

More details:

	setuptools docs [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins]

	Python packaging docs [https://packaging.python.org/guides/creating-and-discovering-plugins/#using-naming-convention]

db-facts

db-facts translates from user-familiar database coordinates (e.g.,
“redshift”, “corppostgres dbadmin”, “productoracle impl juser”) into
detailed instructions on how to access the database in question,
providing configuration and templating mechnisms to wrap any
credential management tools involved in providing those details and
credentials.

Example:

$ db-facts sh redshift
export CONNECTION_TYPE
CONNECTION_TYPE=direct
export LASTPASS_SHARE_NAME_SUFFIX
LASTPASS_SHARE_NAME_SUFFIX='blue labs redshift'
export DB_PASSWORD
DB_PASSWORD='hunter2'
DB_HOST=whatevs.whatevs.us-east-1.redshift.amazonaws.com
export DB_HOST
export DB_DATABASE
DB_DATABASE=analytics
export DB_USERNAME
DB_USERNAME=vbroz
export DB_PORT
DB_PORT=5439
export DB_TYPE
DB_TYPE=redshift
export DB_PROTOCOL
DB_PROTOCOL=postgres

To do this, it relies on a config file (“dbcli.yml”) which teaches it
how to parse the user-friendly coordinates. Much of the heavy lifting
in the parsing part is done
by
jinja_context.py [https://github.com/bluelabsio/db-facts/blob/master/db_facts/jinja_context.py],
which sets some variables and functions that can be used in jinja
templates within the config file.

This is part of the suite of programs which allow a user to type in
things like db redshift and connect via their own credentials to the
configured database named ‘redshift’. Other parts of this chain can
be found in the ws-scripts [https://github.com/bluelabsio/ws-scripts]
repo.

If you need to set the instructions immediately to your environment
variables, you can do this with the command:

eval $(db-facts redshift)

Configuration

You can configure db-facts to connect to your databases. See
CONFIGURATION.md for details.

Extensions

You can extend db-facts to pull configuration from other systems.
See EXTENSIONS.md for details.

Library

To use as a library:

$ python
Python 3.5.2 (default, Sep 12 2016, 09:31:17)
[GCC 4.2.1 Compatible Apple LLVM 7.3.0 (clang-703.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import bluelabs_db_facts
>>> db_facts.db(['redshift'])
{'protocol': 'postgres', 'lastpass_share_name_suffix': 'blue labs redshift', 'host': 'bl-int-analytics1.cxtyzogmmhiv.us-east-1.redshift.amazonaws.com', 'connection_type': 'direct', 'user': 'vbroz', 'database': 'analytics', 'password': 'hunter1', 'port': 5439, 'type': 'redshift'}
>>>

Development

See DEVELOPMENT.md

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

